

Chapter 1 Foundations24

the calculator’s operating system and the manner in
which numbers and arithmetic processes are embodied
in the device. In this respect, we are interested in how
information is stored (i.e., represented) within the
device and also how various arithmetic operations are
instantiated. We will discuss in much more detail the
notion of representation as we proceed through this
book (see Chapter 7, for instance). For now, though,
we will stick with a simple definition and assert that
for any information processing device, information
from the outside world is represented internally within
the device. So when the number 2 is entered into the
calculator this is represented via some form of elec-
tronic code. This form of internal representation
stands for the number 2. By analogy, where the mind
is concerned such internal (mental) states stand for
(i.e., represent) actual states in the real world.

What then happens to such representations is a
matter for the algorithm, or more particularly, the set
of operations that are carried out on these repres-
entations. In computer science the term ‘algorithm’ is
mainly used interchangeably with the phrase ‘com-
puter program’, but we may take a more general read-
ing and define it as a procedure that, when correctly
applied, ensures the correct outcome. If you entered a
‘+’ sign into the calculator and it is working properly
then it should invoke its addition algorithm. The addi-
tion algorithm comprises the sequence of operations
that determine that two numbers are added together.
So understanding the nature of the calculator depends
on trying to specify the nature of internal representa-
tions and the associated internal algorithm. In terms
of understanding human cognition, and by analogy,
we need to consider both mental representations
and mental processes. In this respect our functional
account should not only provide a flow chart that
maps out the relations between component processes,
but also some description of the sorts of internal rep-
resentations that are also implicated. A much more
thorough exploration of these ideas is contained in
the next chapter, but in summary, at the level of the
representation and the algorithm we are committed
to being precise about (i) how states of the world are
represented by the device, and (ii) what the contingent
internal processes are.

The level of the hardware

Finally there is the hardware implementation level
and, as we have already noted, flow charts such as
that shown in Figure 1.6 are of little use. Concerns at

reverse engineering Attempting to understand how
a pre-existing device works on the basis of how it
behaves.

Marr’s levels of explanation and
cognitive psychology

How, therefore, can such information processing
devices be best understood? To answer this, we must
now turn to a framework for thinking that was pro-
vided by Marr (1982). According to him it is possible
to discuss three levels of description of any kind of
information processing device, namely:

1. The level of the computational theory.
2. The level of the representation and the algorithm.
3. The level of the hardware implementation.

The level of the computational theory
At the computational theory level, concern is with
what the device does and why it does it. It is at this
level that the ‘logic of the strategy’ (Marr, 1982, p. 28)
is spelt out. Consider the following example of an
electronic calculator and the question of how it carries
out arithmetic. Analysis at the level of the computa-
tional theory would address the fact that the calculator
carries out various arithmetic operations (the ‘what
it does’) and the fact that it uses a particular method
for carrying these out (the ‘why it does what it does’).
For instance, an early Hewlett Packard calculator (the
HP35) used a method based upon something known
as Reverse Polish. So expressions such as:

(1 + 2) × 3

were entered as

1 2 3 × +

which accords with something known as postfix nota-
tion (or Reverse Polish – and because of this, and per-
haps the price, it is no wonder this model quickly died
out). The computational theory would be therefore
be concerned with issues like why Reverse Polish was
used and what the principles of Reverse Polish are.

The level of the representation and
the algorithm
At the representation and the algorithm level much
more detailed questions are asked about the nature of

COGP_C01.qxd 3/14/08 9:42 AM Page 24

Introduction to the nature of explanation 25

this level are with how the designated representations
and processes are implemented physically. What phys-
ical components do we need to build the device? As
has been discussed, the one purpose of a functional
description is to avoid any commitment to physical
instantiation, but of course to attain a full understand-
ing of any physical device details at all three levels of
explanation will need to be addressed.

For computer languages to be at all useful, however,
there needs to be a means of converting (i.e., trans-
lating) an actual program into a form that can be run
on a particular computer. Stated thus, concerns about
hardware are paramount. In some programming lan-
guages the translation stage may involve two steps:
(i) converting the computer program into an inter-
mediate code known as assembly language, and then
(ii) converting assembly language into machine
instructions. It will be something of a relief to learn
that we need not concern ourselves with the detailed
nature of assembly language.

The critical point is that the stage of translation
takes a representation of the program and converts
it into something known as binary code – a series of
0s and 1s where each 0 and 1 is known as a bit. For
instance, the command PRINT might be translated
into 0101000010101010. The 0s and 1s are vital
because they correspond to the respective OFF/ON
states of the critical electronic components of your
computer – here referred to as transistors. Think of
these as being akin to simple switches in an electric
circuit: if the switch is ON, electricity flows this way
round the circuit; if the switch is OFF, the circuit is
closed. So there is a fundamental level at which prop-
erties of the program correspond exactly with physical
states of the machine. The machine code corresponds
to the physical state of the computer’s ‘switches’ and
these cause the computer to behave in particular ways.
Any change in state of the switches results in the com-
puter doing something else.

This example provides a concrete illustration of
how Marr’s levels of analysis may be useful in attempt-
ing to explain the operation of a computer. The cen-
tral idea is that the computer can be described at a
number of different levels, and that there is no sense
in which a description at any particular level is more
correct or valid than a description at any other level.
The different descriptions serve different purposes.
If the questions are about what the program is
supposed to do, then these concern the level of the
computational theory. If the questions concern the
design of the program, then these will be answered
most appropriately at the level of the representation
and the algorithm. If the questions concern whether
the program uses an 8-bit or 16-bit representation
of numbers (don’t worry, your computer science
friends will be only too delighted to tell you what these
are), then the answers will be at the level of the
machine code and therefore at the level of hardware
implementation.

Pinpoint question 1.9

According to Marr (1982), what are the three levels of
description for any device?

Levels of explanation and information
processing systems

Let us examine the notion of levels of explanation in
more detail and apply this in an attempt to under-
stand the operation of a programmed computer: the
paradigm case of an information processing system.
One way of conceptualising how a computer operates
is in terms of the following levels:

1. The intended program.
2. The actual computer program.
3. Translation.
4. Machine instructions.
5. Transistors.

The level of the intended program – Level 1 – is where
discussion of what it is that the program is designed to
do takes place. Using Marr’s framework, this is couched
at the computational level and may be fleshed out by
stating what we want the program to do – we need to
specify the goals and objectives behind the program.
For instance, we want the program to produce a bank
statement that itemises all in-goings and out-goings
on an account in a month. At this point there is no
need to make any reference to any specific kind of
computer or hardware of any kind. At the next level
(i.e., at Level 2) the necessary step is to commit ideas to
‘paper’ by writing a computer program in a particular
language, e.g., BASIC, PASCAL, FORTRAN, etc. In
completing these two stages both the level of the com-
putational theory and the level of the representation
and algorithm have been captured. Importantly, both
of these levels have been addressed without any con-
cern whatsoever about the nature of the computer
that the program will run on.

COGP_C01.qxd 3/14/08 9:42 AM Page 25

